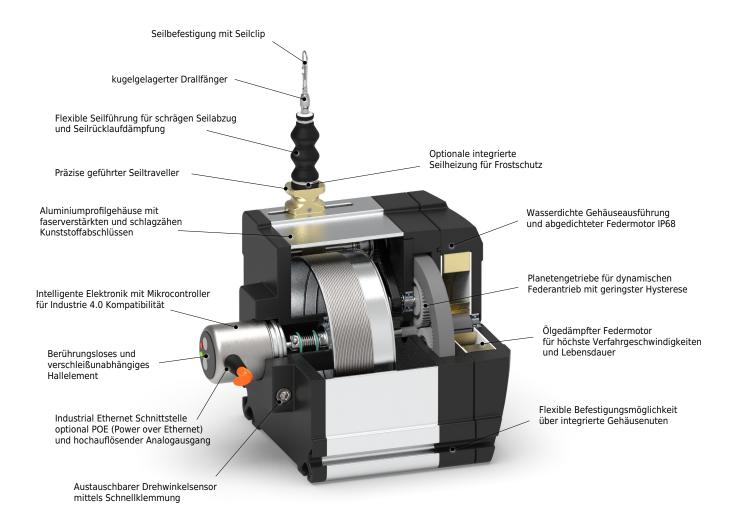


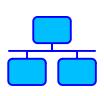
S635 S935 | LANGWEGSENSOR

Seilzugsensoren für den Industrieeinsatz mit Planetengetriebe - für große Messbereiche von 10 bis 60 m


- Industrie 4.0 Kompatibilität
- Verschleißfreies Hall-Element
- Messlängen 10...60 m
- Industrial Ethernet
- Power over Ethernet POE
- Hohe Dynamik und Störfestigkeit
- Kundenspezifische Bauformen

DIE INNOVATION IM ÜBERBLICK

MECHANISCHER AUFBAU


Die neuen Seilzuggetriebesensoren für große Messbereiche wurden grundlegend überarbeitet und sind besonders langlebig und robust konzipiert. Durch den Einsatz eines Planetengetriebes in Kombination mit dem kraftvollen Federmotor werden dynamische Messungen mit geringster Hysterese ermöglicht. Die Ausgangsart "Industrial Ethernet" lässt sich schnell in Applikationen integrieren und bietet Industrie 4.0 Kompatibilität. Alternativ lassen sich handelsübliche Drehwinkelgeber mittels Schnellklemmung und einer teilbaren Balgkupplung anbauen. Die Gehäuse bestehen aus hochwertigem Aluminiumprofil mit faserverstärkten Kunststoffabschlüssen und bieten eine hohe Flexibelität hinsichtlich der Installation. Die Sensoren besitzen einen ölgedämpften Fedemotor, welcher den Seilabzug besonders reibungsarm, hochdynamisch und mit hoher Lebensdauer ermöglicht.

■ INDUSTRIAL ETHERNET

Für einen schnellen und effizienten Austausch von Daten wie z.B. die Messdaten (Seilauszugslänge, Seilgeschwindigkeit und Beschleunigung) oder die Konfiguration der Hardware ist eine Ethernet/IP-Schnittstelle implementiert.

Das Ausgangssignal wird durch einen Hallgeber und einem Mikrocontroller aufbereitet und über die Schnittstelle ausgegeben. Ethernet/IP IEEE 802.3 Standard.

ETHERNET	
Speicher (Eingang/Ausgang)	4K-Byte Data (bis zu 2048 Variablen lesen und schreiben)
Baudrate	10/100 Mbit/s
Protokolle	TCP/IP, UDP oder ICMP, DHCP
Extras	VLAN Tagging, AMBA 2.0 (Master/Slave)
Potentialtrennung	500 V System/Feld

DIE INNOVATION IM ÜBERBLICK

■ FLEXIBLE SEILFÜHRUNG

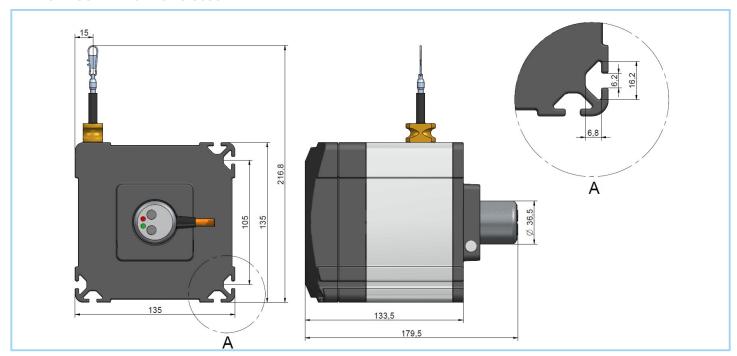
Die Verwendung der patentierten flexiblen Seilführung erlaubt einen Schrägabzug bis zu 50° in allen Richtungen. Das Seil wird in einer speziellen Gleitführung weich und knickfrei mit einem großen Biegeradius umgelenkt. Dadurch entsteht ein maximaler Verschleißschutz des Messseils.

■ FROSTSCHUTZ - BEHEIZTES MESSSEIL

Für tiefe Einsatztemperaturen und extreme Betriebsbedingungen im Freien. Vermeidet zuverlässig anfrierende Wassertropfen am Messseil und Blockade des Seilablaufes bei Minustemperaturen und Feuchtigkeit. Die Seilheizung führt einen Heizstrom über das Messseil und regelt diesen in Abhängigkeit der Aussentemperatur und der Auszugslänge. Der Sensor sowie das Messseil wird durch die patentierte Lösung vor Frost unabhängig der Seilabzugslänge geschützt.

■ DREHWINKELGEBER SCHNELLKLEMMUNG

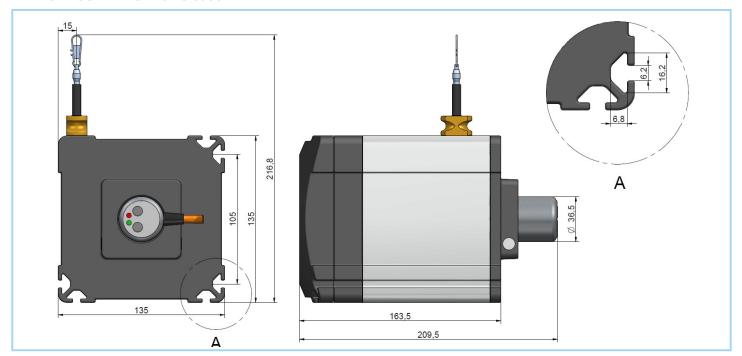
Es können standardisierte Drehwinkelgeber einfach und schnell angebaut werden. Im Sensor ist eine teilbare Balgkupplung integriert, die höchste Linearität gewährleistet.



TECHNISCHE DATEN - S635

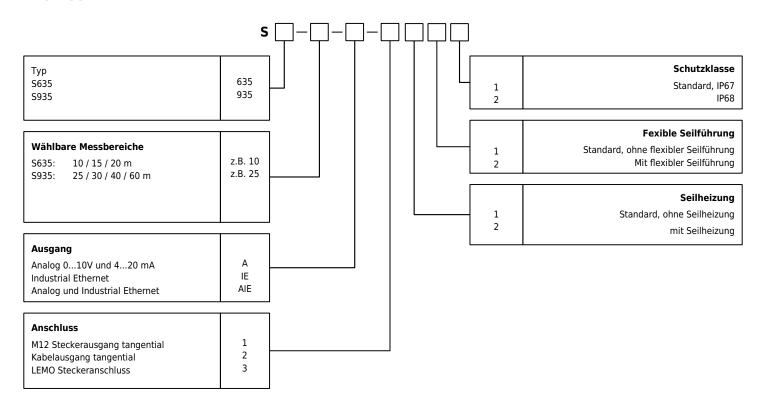
SENSOR		S635
Messbereich	[m]	10 / 15 / 20
Linearität	[%]	0,01
Auflösung	[%]	0,005
Hysterese	[%]	0,05
Messseil-Durchmesser	[mm]	1,00
Messseil-Material		1.4401
Seil-Bewegungsgeschwindigkeit		10 m/s
Seil-Rückzugskraft		1420 N
Temperaturbereich		-30+85°C
Lebensdauer		1 Mio. Vollzyklen
Schutzklasse		IP67 (optional IP68)
Gehäusebauart		Aluminiumprofil und faserverstärkter Kunststoff mit Befestigungsnuten
Gewicht	[g]	1800
Vibrationsbelastung		20 g, DIN EN 60068-2-6
Schock		100 g / 6 ms, DIN EN 60068-2-27
Sensorelement		Hall-Element
Seilbefestigung		Clip mit kugelgelagertem Drallfänger

■ TECHNISCHE ZEICHNUNG S635



TECHNISCHE DATEN - S935

SENSOR		S935
Messbereich	[m]	25 / 30 / 40 / 60
Linearität	[%]	0,01
Auflösung	[%]	0,005
Hysterese	[%]	0,05
Messseil-Durchmesser	[mm]	1,00
Messseil-Material		1.4401
Seil-Bewegungsgeschwindigkeit		10 m/s
Seil-Rückzugskraft		1530 N
Temperaturbereich		-30+85°C
Lebensdauer		1 Mio. Vollzyklen
Schutzklasse		IP67 (optional IP68)
Gehäusebauart		Aluminiumprofil und faserverstärkter Kunststoff mit Befestigungsnuten
Gewicht	[g]	2700
Vibrationsbelastung		20 g, DIN EN 60068-2-6
Schock		100 g / 6 ms, DIN EN 60068-2-27
Sensorelement		Hall-Element
Seilbefestigung		Clip mit kugelgelagertem Drallfänger


■ TECHNISCHE ZEICHNUNG S935

BESTELLCODE

SENSOR

WARNHINWEISE

- Befestigen Sie den Sensor an dem dafür vorgesehenen Ort an den Befestigungsbohrungen, bevor Sie das Seil ausziehen oder bevor Sie das Seil am Messobjekt befestigen.
- Öffnen Sie den Seilclip nachdem der Sensor fest montiert wurde, und ziehen Sie das Messseil aus. Hängen Sie den Seilclip am Objekt ein und schließen Sie den Bügel des Seilclips. Benutzen Sie zur Sicherheit einen dünnen Schraubenzieher und führen diesen durch den Seilclip zum Ausziehen des Seiles.
- Kontrollieren Sie die Verfahrstrecke des Messobjektes auf Kollision mit dem Sensorgehäuse oder Überfahren des spezifizierten Messbereiches. Installieren Sie den Sensor so, dass bei Seilrücklauf der Stoppergummi nicht am Seilturm oder der flexiblen Seilführung des Sensors anstößt.
- Führen Sie den elektrischen Anschluss je nach Ausgangstyp durch. Beachten Sie bei der Kabelverlegung den minimal zulässigen Kabelbiegeradius (5 x Kabeldurch-messer).
- Das Seil muß in Betrieb senkrecht aus dem Sensor ausgezogen werden. Die maximale Abweichung zur Vertikalen beträgt 3° ohne Verwendung der fexiblen Seilführung. Vermeiden Sie unbedingt ein schräges Ausziehen des Messseiles. Die Lebensdauer des Gerätes würde sich dadurch verkürzen. Sollte die Toleranzgrenze von 3° nicht eingehalten werden können, ist die Verwendung der flexiblen Seilführung notwendig.
- Der Messbereich bzw. der Nullpunkt beginnt nach ca. 2 mm Seilauszug. Die mechanische Reserve am Ende des Messbereiches beträgt ca. 20 mm.
- Schützen Sie den Sensor und das Seil bei der Montage im Freien bei Minustemperaturen vor Eisbildung. Für Anwendungen im Freien mit Frostgefahr ist die Verwendung der Seilheizung notwendig.
- Verlegen Sie das Seil vorzugsweise in Ecken oder geschützt unter Führungen, um Verschmutzung oder versehentliche Berührung zu vermeiden.
- Beachten Sie bei der Handhabung des Sensors, das Seil nicht versehentlich schnappen zu lassen oder das Seil über den spezifizierten Messbereich auszuziehen. Das unkontrolliert zurücknellende Seil kann Personenschäden verursachen.
- Wartung: Die Geräte sind wartungsfrei. Sollte jedoch durch widrige Umgebungsbedingungen das Seil verschmutzt werden, so ist dies je nach Bedarf mit einem leicht ölgetränkten Tuch zu reinigen. Verwenden Sie dazu harzfreies Maschinenöl.

